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Complex singularities of the critical potential in the large-N limit
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We show with two numerical examples that the conventional expansion in powers of the �eld for
the critical potential of 3-dimensional O(N) models in the large-N limit, does not converge for values
of �2 larger than some critical value. This can be explained by the existence of conjugated branch
points in the complex �2 plane. Pad�e approximants [L+ 3=L] for the critical potential apparently
converge at large �2. This allows high-precision calculation of the �xed point in a more suitable set
of coordinates. We argue that the singularities are generic and not an artifact of the large-N limit.
We show that ignoring these singularities may lead to inaccurate approximations.

I. INTRODUCTION

Since the early days of the renormalization group (RG)
method [1], 3-dimensional scalar models have been iden-
ti�ed as an important laboratory to discuss the existence
of non-trivial �xed points and the large cut-o� (or small
lattice spacing) limit of �eld theory models. In the case
of N -components models with an O(N) invariant La-
grangian, the RG transformation becomes particularly
simple in the large-N limit [2]. The construction of the
e�ective potential for these models is discussed in Refs.
[3{5]. Later, motivated by perturbative results indicating
the existence of an UV stable tricritical �xed point for
N large enough [6], a new mechanism allowing sponta-
neous breakdown of scale invariance and dynamical mass
generation was found in the large-N limit [7]. In the fol-
lowing, we call this mechanism the \BMB mechanism".
It was argued [8] that the BMB mechanism is compatible
with a zero vacuum energy and a better understanding
of this question might suggest a solution to the cosmo-
logical constant problem. Spontaneous breaking of scale
invariance is also discussed [9] with related methods in
four-dimensional models of clear interest in the context
of particle physics. However, doubts were cast [10] about
the fact that the BMB mechanism is generic and it is
commonly believed that it disappears at �nite N .
In this article we report results which force us to re-

consider the way we think about non-trivial �xed points.
We usually think of the RG ows as taking place in a
space of bare couplings or more generally in a space of
functions. The necessity for this more general point of
view appears quite clearly in exact renormalization group
equations [11]. Unfortunately, it seems impossible to de-
cide a-priori which space of functions should be consid-
ered to study the RG ows. It is clear from perturbation
theory that near the Gaussian �xed point, low dimen-
sional polynomial approximations of the local potential
should be adequate. However, it is not clear that this

kind of approximation should be valid far away from the
Gaussian �xed point and in particular near non-trivial
�xed points.

In the following, we concentrate on the non-trivial �xed
point found numerically in the case N = 1 by K. Wil-
son [1]. This �xed point is located on a hypersurface of
second order phase transition which separates the sym-
metric phase from the broken symmetry phase. In the
following we call this �xed point the Heisenberg �xed
point (HFP for short) as in Ref. [10]. It should not be
confused with the �xed point relevant for the BMB mech-
anism and which is not studied in detail here. The main
result of the article is that the bare potential correspond-
ing to the HFP has singularities in the complex plane and
that ignoring these singularities may lead to inaccurate
approximations. These claims are based on explicit cal-
culations performed in the large-N limit for two O(N)
invariant models reviewed in section II. These two mod-
els are: 1) a model with a k2 kinetic term together with
a sharp cut-o�, the sharp cut-o� model (SCM) for short;
2) Dyson's hierarchical model (HM) [12,13].

Before entering into technical details, three points
should be clear. First, all the results presented here are
based on the analysis of long numerical series and no at-
tempt is made to give rigorous proofs. Second, in order
to understand some of the statements made below, the
reader should be aware that even though, at leading order
in the large-N approximation, the critical exponents take
N -independent values, the same approximation provides
�nite N approximate HFP which are N -dependent. A
more precise formulation of this statement can be found
in Sections II and VI. Third, we only work in 3 dimen-
sions. The precise meaning of this statement for the hi-
erarchical model is explained at the end of section II.

In section III, we review the basic equations [2,10]
de�ning the HFP for the SCM. We then show that the
de�nition can be extended naturally for the HM. The cor-
rectness of this de�nition is veri�ed later in the paper. In
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section IV, we present the methods used to calculate the
critical potential expanded as a Taylor series in �2. The
coe�cients of this expansion are called the critical cou-
plings. The main conclusion that we can infer from our
numerical results is that the Taylor series is inadequate
for large values of �2. First of all, one half of the critical
couplings are negative. If we truncate the Taylor series
at an order such that the coe�cient of the highest order
is negative, we obtain an ill-de�ned functional integral.
In addition, the absolute value of the critical couplings
grows exponentially with the order and the expansion
has a �nite radius of convergence. Consequently, the idea
that the critical potential associated with the HFP can
be approximated by polynomials should be reconsidered.
It is nevertheless possible to de�ne the critical theory

by using Pad�e approximants for the critical potential. In
section V, we show that sequences of approximants con-
verge toward the expected function in a way very remi-
niscent of the case of the anharmonic oscillator were the
convergence can be proven rigorously [14]. In addition,
the zeroes and the poles of these approximants are lo-
cated far away from the real positive axis and follow pat-
terns that strongly suggest the existence of two complex
conjugated branch points.
The complex singularities of the critical potential

should not be interpreted as a failure of the RG approach
but rather as an artifact of the system of coordinates
used. In section VI, we present consistent arguments
showing that in a di�erent system of coordinates [15,16],
the function associated with the HFP is free of singu-
larities. In this system of coordinates, �nite dimensional
truncation is a meaningful procedure which, in the case of
the HM, allows comparison with independent numerical
calculations at �niteN . An example of such a calculation
is presented in the case N = 5.
In section VII, we discuss the errors associated with

two approximate procedures that can be used to deal
with the singularities. The �rst procedure which is jus-
ti�ed in the context of perturbation theory and does not
require an understanding of the singularities, consists in
truncating the potential at order (�2)3. The second pro-
cedure consists in restricting the range of integration of
�2 to the radius of convergence of the critical potential.
If the range of integration is large enough, this second
procedure generates small errors [17]. As far as the calcu-
lation of the HFP in the system of coordinates of Section
VI is concerned, both procedures have a low accuracy for
both models considered. In the conclusions, we explain
why we believe that the singularities persist at �nite N
and we discuss implications of the existence of these sin-
gularities for other problems.

II. MODELS

We consider lattice models de�ned by the partition
function

Z( ~J) =
Y
x

Z
dN�xe

�S+
P

x

~Jx~�x ; (1)

with

S = �1

2

X
xy

~�x�xy
~�y +

X
x

Vo(�
2
x) : (2)

We use the notation �2x � ~�x:~�x and �xy is a symmetric
matrix with negative eigenvalues, such as discrete ver-
sions of the Laplacian. For the simplicity of the presen-
tation, we will assume that

P
x�xy = 0. If it is not the

case, one can always subtract the zero mode from � and
compensate it with a new term in V .
De�ning the rescaled potential

V0(X) = NU0(
X

N
) ; (3)

and performing a Legendre transform from the source ~J

to the external classical �eld ~�c, one can show that in
the large N limit [10] that M2 � 2@Veff=@�

2
c obeys the

self-consistent equation

2U 0
0(�

2
c + f�(M

2)) =M2 ; (4)

where f�(M
2) is the one-loop integral corresponding to

the quadratic form � and a mass term M2. The prime
denotes the derivative with respect to the O(N) invari-
ant argument. The explicit form of f for the two models
discussed in the following are given in Eqs. (6-7). Pre-
cise de�nitions of �2c and the e�ective potential Veff are
given in [10].
Up to now, all the quantities introduced are dimension-

less. They can be interpreted as dimensionful quantities
expressed in cut-o� units. Let us consider two models,
the �rst one with a rescaled potential U0, a UV cuto�
� and a quadratic form � and a second model with a
rescaled potential U0;S , a UV cuto� �=S and a quadratic
form �S . For D = 3 and in the large-N limit, the
two models have the same dimensionful zero-momentum
Green's functions provided that:

U 0
0;S(�

2) = (5)

S2U 0
0

��
�2 � f�S

(2U 0
0;S(�

2)
�
=S + f�

�
(2=S2)U 0

0;S(�
2)
��

In two special cases, the dimensionless expression for the
one-loop diagram is independent of the cut-o�. In other
words, f� = f�S

� f and the �xed point equation be-
comes very simple [2,10].
We now discuss the two models where this simpli�ca-

tion occurs. In the SCM, � becomes k2 in the momentum
representation (Fourier modes). The momentum cuto� is
sharp: k2 � 1 (in cut-o� units). This is why we call this
model the sharp cuto� model. The non-renormalization
of the kinetic term is justi�ed in the large-N limit [10].
For this model,
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fSCM (z) =

Z
jkj�1

d3k

(2�)3
1

k2 + z
: (6)

By construction [13], the kinetic term of Dyson's hier-
archical model (HM) is not renormalized and we have

fHM (z) =

1X
n=0

2�n�1

b(c=2)n + z
; (7)

with c = 21�2=D and b= �c
2�c . The inverse temperature �

and the parameter c appear in the hamiltonian of the HM
in a way that is explained in section II of Ref. [18]. The
parameter c is related to the dimension D by considering
the scaling of a massless Gaussian �eld. In the following
we will consider the case c = 21=3 (D = 3) exclusively. In
addition, � will be set to 1 as in other �xed point calcu-
lations [18]. Di�erent values of � can be introduced by
a trivial rescaling. Note also that the cuto� cannot be
changed continuously for the HM, because the invariance
of f is only valid when we integrate the degrees of free-
dom of a the largest momentum shell (corresponding to
the hierarchically nested blocks in con�guration space)
all at the same time. For the HM, the density of sites is
reduced by a factor 2 at each RG transformation. The
linear dimension (\lattice spacing") is thus increased by
by a factor 21=D and the cuto� decreased by the same
factor. Consequently, for the HM, Eq. (5) should be
understood only with S = 2q=D = 2q=3 and q integer.

III. THE HFP

In this section, we review the construction of the HFP
for the SCM, and we show that the construction can be
extended in a natural (but non-trivial) way for the HM.
The �rst step consists in �nding all the �xed points of
the RG Eq. (5). Following Refs. [2,10], we introduce the
inverse function:

F (2U 0
0(�

2)) = �2 ; (8)

and the function H(z) � F (z) � f(z) , where the one-
loop function f has been de�ned in the previous section
for the two models considered. With these notations, the
�xed point equation corresponding to Eq. (5) is simply

H(z) = SH(z=S2) : (9)

For the SCM, S is allowed to vary continuously in Eq.
(9) and the general solution is

F (z) = fSCM (z) +Kz1=2 : (10)

For the HM, S can only be an integer power of 21=3 and
the general solution has an in�nite number of free pa-
rameters:

F (z) = fHM (z) +
X
q

Kqz
1=2+iq! ; (11)

with

! � 3�

ln2
' 13:6 ; (12)

and q runs over positive and negative integers. The only
restriction on the constants K and Kq is that F should
have a well de�ned inverse which is real when F (= �2)
is real and positive.
It is clear from Eqs. (6) and (7) that for both mod-

els f(z) has singularities along the negative real axis and
that, in general, F (z) cannot be de�ned for z real and
negative. This imposes restrictions on the choice of the
constants K and Kq. For instance, in the case of the
SCM, when K takes a large positive value, it is impos-
sible to reach small values of F = �2 when z � 0 and
the �xed point has no obvious physical interpretation.
However, there is a special positive value of K for which
the singularity of fSCM is exactly canceled and an ana-
lytic continuation for z < 0 is possible. Its exact value
can be calculated [10] by decomposing fSCM into a regu-
lar part fSCM;reg: and a singular part fSCM;sing:. Using
elementary trigonometric identities, one �nds

fSCM;reg:(z) =
1

2�2
(1 + z1=2Arctan(z1=2)) ; (13)

and

fSCM;sing:(z) = � 1

4�
z1=2 : (14)

Consequently, if we choose K = 1
4� , F reduces to

fSCM;reg:.
A more detailed analysis [10], shows that this value of

K is the only positive value of K for which U 0 can be
de�ned for any real positive �2. On the other hand, for
negative K, one obtains a line of �xed points ending (for
K = 0) at the �xed point relevant for the BMB mecha-
nism. Given the isolation of the �xed point with K = 1

4� ,
it is easy to identify it with the HFP. We denote the cor-
responding inverse function by F ?

SCM (z) = fSCM;reg:(z).
As promised this function is analytical in a neighborhood
of the origin and has a Taylor expansion:

F ?
SCM (z) =

1

2�2
(1 + z � z2

3
+
z3

5
+ : : :) (15)

This expansion has a radius of convergence equal to 1
due to a logarithmic singularity at z = �1. However,
as we will see in section IV, this expansion allows us to
construct an inverse power series and U0.
In the case of the HM, the decomposition into a reg-

ular and singular part is more tedious. Fortunately, this
problem is a particular case of a problem solved in sec-
tion 5 of Ref. [19] where Eq. (5.6) with A = c2, B = c�1

and f(z) = G(z=b) yields

fHM;sing:(z) = � !

4b

X
q

�
z=b
�1=2+iq!

sin(�(1=2 + iq!))
; (16)
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with b and c de�ned in section II.

If we compare this expression with the general solution
of the �xed point equation (11), we see that in both ex-
pressions, the power z1=2+iq! appears for all positive and
negative integer values of q. There exists a unique choice
of the Kq in Eq. (11) which cancels exactly the singu-
lar part of fHM . We call the corresponding �xed point
the HFP of the HM. The numerical closeness with the
�nite N HFP discussed in section VI con�rms the valid-
ity of this analogic de�nition. We call the corresponding
inverse function F ?

HM . Using Eq. (5.5) of Ref. [19], we
�nd

F ?
HM (z) = fHM;reg: =

1

2b

1X
l=0

��z
b

�l
1

1� c2l�1
: (17)

This expansion has a radius of convergence bc2 =
2:7024 : : : for the choice of parameters used here.

It is possible to check the accuracy of the expansion
given in Eq. (17) by using the identity F ?

HM (z) =
fHM (z) � fHM;sing:. Note that the two terms of the
r.h.s. cannot be de�ned separately on the negative real
axis. On the real positive axis, fHM;sing: is dominated
by the q = 0 term. Numerically,

K0 =
3�

4b3=2ln2
= 1:530339 : : : : (18)

The terms with q = �1 produce log-periodic oscillations
of amplitude 1:7� 10�18. The terms with larger jqj have
a much smaller amplitude. These �ndings are consis-
tent with the log-periodic oscillations found numerically
in HT expansions [20,19]. The oscillatory terms are very
small along the positive real axis. However, in the com-
plex plane, if we write z = rei� , the amplitude is multi-
plied by e�q!� which compensates the suppression of the
denominators in Eq. (16), if � ! +�(��) when q < 0
(q > 0). In conclusion, along the real positive axis, we
can use the approximation

F ?
HM (z) ' fHM (z) +K0z

1=2 ; (19)

with an accuracy of 18 signi�cant digits, but this approx-
imation is certainly not valid near the negative real axis.

IV. CALCULATION OF THE CRITICAL

POTENTIAL U?0

In the previous section, we have provided power series
for the inverse function F (z) corresponding to the HFP
of the SCM and the HM. We can use these series to de-
�ne F (z) on the negative real axis. In both cases, as we
move toward more negative values of z, F becomes zero
within the radius of convergence of the expansion. The
situation is illustrated in Fig. 1 for the HM.
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F
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φ2

z = 2U'

FIG. 1. F ?HM(z) versus z

Numerically, we have F ?
HM (�1:5107 : : :) = 0 and

F ?
SCM (�0:6948 : : :) = 0. We then reexpand the series

about that value of z (which corresponds to F = �2 = 0)
and invert it. The resulting series is an expansion of 2U?

0 '
in �2. After integration, and up to an arbitrary constant
u0, we obtain a Taylor series for the critical potential U?

0

corresponding to the HFP. We denote the expansion as

U?
0 (�

2) =

1X
n=0

un(�
2)n : (20)

The precise determination of the zero of F is obtained
by Newton's method with a large order polynomial ex-
pansion. This expansion is then reexpanded about the
zero and the large order coe�cients in the original ex-
pansion have an e�ect on the low order coe�cients of the
reexpanded series. We have checked that the order was
su�ciently large to stabilize the results presented here-
after.
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FIG. 2. Natural Logarithm of the absolute value of the co-
e�cients un of the critical potential U?0 de�ned in Eq. (20)
for the SCM (�lled squares) and the HM (empty circles).
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The absolute values of the �rst 50 coe�cients of both
models are shown in Fig. 2. In both cases, it appears
clearly that the absolute value grows at an exponential
rate. Linear �ts of the right part of Fig. 2 suggest a
radius of convergence of order 0.11 for the SCM and 2.5
for the HM. The signs of both series follow the periodic
pattern: + - - + + - + + - - for the SCM and + + - - for
the HM. This suggests singularities in the complex plane
at an angle k�

5 with respect to the positive real axis (k =
1, 3, 7, 9) for the SCM and along the imaginary axis for
the HM. This analysis is con�rmed by an analysis of the
poles of Pad�e approximants presented in the next section.

V. PAD�E APPROXIMANTS OF U?0

At this point, our series expansion of the critical po-
tential does not allows us to de�ne the critical theory as a
functional integral. As �2 exceeds the critical values esti-
mated in the previous section, the power series is unable
to reproduce the expected function U?

0 . The situation is
illustrated in Fig. 3 for the HM.
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FIG. 3. U?0 (�
2) for the HM with a parametric plot (�lled

squares), the series truncated at order 50 (thick solid line) and
Pad�e approximants [4/1] (thin line slightly above the squares)
and [5/2] (thin line closer to the squares). The constant has
been �xed in such a way that the value at the minimum is
zero.

The numerical values of U?
0 in Fig. 3 have been cal-

culated using a parametric representation (with z as the
parameter). We have calculated pairs of values

�
F ?(z);

1

2

�
zF ?(z)�

Z z

0

dz0F ?(z0)
��

; (21)

for various real positive values of z. A simple graphi-
cal analysis performed by representing U?

0 as a surface
on Fig. 1 shows that each pair of values in in Eq.

(21) corresponds to a pair (�2; U?
0 (�

2)) with the arbi-
trary constant in U?

0 �xed in such a way that U?
0 van-

ishes at its minimum. We have calculated F ? by us-
ing the independent but approximate Eq. (19). As ex-
plained in section III, the approximate expression is only
valid for z real and positive and should give 18 correct
signi�cant digits. In Fig. 3, we have used the values
z = 2U 0

0 = 0; 0:25; 0:5; : : :. This is why the �lled squares
only appear when the derivative of U?

0 is positive. Unlike
Eq. (17) which has a radius of convergence 1, the approx-
imate expression Eq. (19) remains valid for large positive
values of z. It is thus possible to check if Pad�e approxi-
mants can be used to represent the critical potential be-
yond the radius of convergence of its Taylor expansion.
Fig. 3 shows that low order approximants are close to
the parametric curve. As the order increases, the curves
coalesce with the parametric curve and a more re�ned
description is necessary.

In Fig. 4, we give the accuracy reached by various ap-
proximants for the HM with a broad range of �2 (more
than 4 times the radius of convergence). As the order of
the approximants increase the accuracy increases but at
a rate which is slower for larger values of �2. The �gure is
very similar to sequences of Pad�e approximants obtained
for the ground state of the anharmonic oscillator (see Fig.
1 of Ref. [17]), where the convergence can be proven rig-
orously [14]. Note that the slow convergence at large �2

is not a serious problem, since the contributions for large
�2 are exponentially suppressed in the functional inte-
gral. The choice of [L + 3=L] approximants is discussed
in more detail below. Up to now, we only discussed the
HM. Following the same procedure for the SCM, we ob-
tain very similar �gures (with a di�erent �2 scale) which
we have not displayed.
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S
ig

n.
 D

ig
its

φ2

 [13/10]

 [17/14]
 [21/18]

HM

FIG. 4. Number of correct signi�cant digits obtained with
Pad�e approximants [9/6], [13/10], [17/14] and [21/18] for var-
ious values of �2 for the HM.

The singularities of U?
0 in the complex �2 plane can

be inferred from the location of the zeroes and poles of
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the Pad�e approximants. As L becomes large, regular
patterns appear. Examples are shown in Fig. 5 for the
SCM and Fig. 6 for the HM. In both cases, the zeroes
and poles approximately alternate along two lines end-
ing where singularities were expected from the analysis
of coe�cients in Section IV. This pattern suggests [21]
the existence of two complex conjugated branch points
at the end of these lines.
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SCM

  

num.

   

 

FIG. 5. Real and imaginary parts of the roots of the
denominator (�lled squares) and numerator (crosses) of a
[26/23] Pad�e approximant for the SCM The solid circle has
a radius 0.11 and the two solid lines make angles � 3�

5
with

respect to the positive real axis.
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FIG. 6. Real and imaginary parts of the roots of the de-
nominator (�lled circles) and numerator (crosses) of a [26/23]
Pad�e approximant for the HM. The solid circle has a radius
2.5. Two roots farther away on the imaginary axis and one
root farther away near the negative real axis are not displayed.

The choice of [L + 3=L] approximants is easily justi-
�ed for the SCM. At large jzj, fSCM (z) / 1=z and and

F ?
SCM (z) ' 1

4� z
1=2. For large j�2j, U?

0 '' 8�2(�2)2 and

U?
0 ' 8�2

3 (�2)3. Consequently a [L + 3=L] approximant
should have the correct asymptotic behavior. More pre-
cisely, if aL+3 and bL are the leading coe�cients of the
numerator and denominator of a Pad�e [L+ 3=L] respec-
tively, we expect that when L is large

aL+3
bL

! 8�2

3
(22)

De�ning a quantity

EL � 1� 3aL+3
8�2bL

; (23)

that measures the departure from the expected asymp-
totic behavior, we see from Fig. 7 that as L increases,
the discrepancy diminishes exponentially.
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|
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FIG. 7. LogjELj versus L.

In the case of the HM, the situation is more intricate.
From Eq. (19), we may be tempted to conclude that the
two cases are similar. Unfortunately, Eq. (19) is a real
equation not a complex one. In the complex plane, the
terms with q 6= 0 become important near the negative
real axis and no simple simple limit as in Eq. (22) ap-
plies. However, if we need U?

0 only along the real positive
axis, Fig. 4 justi�es the use of the [L+ 3=L] sequence of
approximants.

VI. THE HFP IN A CONVENIENT SET OF

COORDINATES

As explained in the introduction we can think that the
RG ows move in a space of functions. The system of
coordinates for this space can be chosen in a way which
is convenient to make approximations. A particularly
convenient system of coordinates for the HM consists in
considering the Fourier transform of the local measure of
integration [15,16]. In this system of coordinates and at
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leading order in the 1=N expansion, the HFP for a given
N reads:

R?(~k) /
Z
dN�e�

b

2
�2�NU?

0
(�2=N)+i~k:~� : (24)

The quadratic term proportional to b is due to the fact
that the quadratic form � for the HM has a zero mode.
We then Taylor expand

R?(~k) = 1 +

1X
n=1

an(k
2)n ; (25)

and consider the an as the our new set of coordinates.
The advantage of this representation is that it is possible
to make very accurate calculations by using polynomial
approximations [15,16,18] of the in�nite sum in Eq. (25).
In this section and the next section, we discuss the de-
tails of the calculations for the HM. The case of the SCM
shares many similarities with the HM and is discussed
briey at the end of each section.
We have performed a numerical calculation of the an

of the HM using Eq. (24) in the particular case N = 5.
The study of the ratios of successive coe�cients displayed
in Fig. 8 indicates that the janj decay faster than 1=n!

and that R?(~k) is analytical over the entire complex k2

plane in contrast to U?
0 (�

2) which has a �nite radius of
convergence in the complex �2 plane.

The good convergence of R?(~k) can be explained by
an approximate calculation. The � integral that is per-
formed in the calculation of the an has a positive inte-
grand with a peak moving to larger values of j�j when
n increases. For su�ciently large values of n, we can re-
place U?

0 by its asymptotic behavior on the positive real
�2 axis which can be derived from the approximate Eq.
(19) for the HM:

R?(~k) �
Z
dN�e�(1=(6N

2K2

0
))(�2)3+i~k:~� : (26)

With this approximation, the an can be expressed exactly
in terms of gamma functions and a simple calculation
yields

� an
an�1

' (6N2K2
0)

1=3�((N + 2n)=6)

4n(n� 1 +N=2)�((N + 2(n� 1))=6)
: (27)

Note that there are no free parameters in this formula.
Fig. 8 shows that Eq. (27) is a very good approximation
of the ratios obtained numerically from Eq. (24).
We have also calculated the an corresponding to the

HFP for N = 5 using the numerical method developed
in the case N = 1 in Ref. [18] and which can be extended
easily for arbitrary N . In brief, it consists of �nding the
stable manifold by �ne tuning the temperature and then
iterating the RG transformation in order to get rid of
the irrelevant directions. This procedure is very accu-
rate and completely independent of the approximations
made in this article. Remarkably, we found that even

though N = 5 is not a large number, the �rst coe�cients
obtained in the leading order in the 1=N approximation
coincide with about two signi�cant digits with the accu-
rate values found numerically with N = 5. As the order
increases, the accuracy degrades slowly. This is explained
in more detail below. However, the ratios of successive
coe�cients still follows closely the asymptotic prediction
obtained from Eq. (27). This strongly suggests that the
(�2)3 asymptotic behavior of the critical potential per-
sists at �nite N .
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1E-3

0.01

0.1

1

 lead.

 

 

-a
n
/a

n-
1

order n

 asy.

 
 

HM:N=5

 num.

 
 

SCM:

 asy.

 

 

 

 

 lead.

FIG. 8. Ratios of successive coe�cients for the HM, using
the leading order Eq. (24) (stars), the asymptotic formula
Eq. (27) (continuous line) and the numerical �xed point
(empty circles). Same results for the SCM: leading order
(�lled squares) and asymptotic (dashed line). In all cases,
N = 5.

Except for the comparison with independent numeri-
cal calculations at �nite N , the same calculations can be
performed for the SCM with minor changes (b ! 0 and
K0 ! K). The results are also shown in Fig. 8 where one
can see that the agreement with the asymptotic formula
is very good even at low order.

VII. DISCUSSION OF ALTERNATE

PROCEDURES

In section V, we have shown that the Pad�e approxi-
mants provide accurate values of U?

0 far beyond its radius
of convergence. In order to estimate the error on the new
coordinates an due to the use of approximants for U?

0 , we
can vary the range of integration and change the approx-
imants. For instance the values of an of the HM used in
Fig. 8 have been calculated using a range of integration
j�j < 20 and a [26/23] Pad�e approximant. For the values
of n considered here, changing the range of integration
has e�ects smaller than the errors due to numerical in-
tegration (which has an accuracy of about 11 signi�cant
digits in our calculation) provided that we include values
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up to j�j ' 4:9. Restricting the range of integration to
smaller values produces sizable e�ects. As an example,
the small e�ects due a restriction to j�j < 4:4 are shown
in Fig. 9. Similarly, the values of an are not very sensi-
tive to small changes in the Pad�e approximants. Sizable
e�ects are obtained by changing the order of the numera-
tor and denominator by approximately 10. For instance,
the e�ects of using a [14/11] approximant are shown in
Fig. 9.
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0

5

10

15

 

 num.

si
gn

. d
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order n
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 14/11;20

FIG. 9. Number of signi�cant digits common with our best
estimate for the an obtained for the HM from Eq. (24) with
n (the order) going from 1 to 20. The alternate procedure
are the truncation at order (�2)3 (�lled circles), the N = 5
accurate numerical result (�lled square), no Pad�e approxi-
mants but a truncation of the range of integration close to
the radius of convergence (empty circles), a restriction of the
range of integration for � < 4:4 (stars), and a [14/11] Pad�e
(diamonds).

Having demonstrated that we can calculate the �rst
20 coe�cients an, at leading order in the 1=N expansion,
with at least 10 signi�cant digits, we can now discuss the
errors associated with other procedures mentioned in the
introduction. The �rst procedure consists in truncating
U?
0 keeping only the terms up to order (�2)3. This is pro-

cedure inspired by perturbation theory amounts to keep
only the relevant and marginal directions near the Gaus-
sian �xed point. From Fig. 9, we see that this procedure
generates errors which are of the same order as the errors
due to the use of the leading 1=N approximation. Con-
sequently, this procedure is quite unsuitable to study the
correction to this approximation. Slightly better results
are obtained by keeping as many terms as possible in the
expansion (up to 50 in our calculation) but restricting the
range of integration in such way that we stay within the
radius of convergence. Given the rescaling of Eq. (3) this
means that for N = 5, we need to restrict the integration
to j�j < p

5� 2:5 ' 3:54 which is substantially smaller
than the acceptable �eld cuto� 4.9 mentioned above. As
one can see from Fig. 9, this creates errors which are be-

tween one and two orders of magnitude smaller than the
1=N corrections. This is better but it compares poorly
with what can reached with Pad�e approximants.

Again, except for the comparison with independent nu-
merical calculations at �niteN , the same calculations can
be performed for the SCM with minor changes. Results
very similar to those shown in Fig. 9 for the HM can be
produced. Since it contains essentially the same infor-
mation, it has not been displayed. It should however be
noted that the number of signi�cant digits obtained with
the two alternate procedures are lower than in the case
of the HM. In the case of the truncation of the range of
integration, we need to restrict to j�j < p5� 0:11 ' 0:74
while a range of about 2 is required in order to obtain an
accuracy consistent with the method of numerical inte-
gration.

VIII. CONCLUSIONS

We have shown in two di�erents models where the crit-
ical potential can be calculated at leading order in the
1=N expansion that these potentials have �nite radii of
convergence due to singularities in the complex plane.
Do such a results persist at �nite N? In the case of the
HM, the behavior of the ratios at �nite N shown in Fig.
8 strongly suggests that at large real positive �2, the
critical potential still grows like (�2)3. Can an in�nite
sum converging over the entire complex plane have this
kind of behavior? This is certainly not impossible (e.g.,

(�2)3 + e��
2

), however it requires cancellations that we
judge unlikely to happen. Consequently, we conjecture
that the singularities observed are generic rather than
being an artifact of the large-N limit.

We have observed that in a system of coordinates
where the HFP can be approximated by polynomials,
the procedure which consists in considering bare poten-
tial truncated at order (�2)3 describes the HFP with a
low accuracy. We are planning to investigate if similar
problems appear near tricritical �xed points. In particu-
lar, reconsidering the RG ows in a larger space of bare
parameters may a�ect the generic dimension of the in-
tersections of hypersurface of various codimensions and
help us �nding a more general realization of spontaneous
breaking of scale invariance with a dynamical generation
of mass.

Our results have qualitative similarities common with
those of Refs. [22]: we found some \pathologies" which
forces us to look at the RG transformations in a more
open-minded way. We are planning [23] to compare in
more detail, the leading order results presented here with
�nite N results, as suggested in Ref. [24] for the local po-
tential approximation. Another issue regarding the O(N)
models and which would deserve a more detailed inves-
tigation is the question of �rst order phase transitions
[25,26].
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